Fiasp® (insulin aspart injection) is a rapid-acting insulin analog for subcutaneous or intravenous administration used to lower blood glucose. Insulin aspart is similar to regular human insulin with a single substitution of the amino acid proline by aspartic acid in position B28. Fiasp is indicated to improve glycemic control in adults with type 1 and type 2 diabetes mellitus. Fiasp is available as a 10 mL multiple-dose vial and a 3 mL single-patient-use FlexTouch pen. It is to be given at the start of a meal or within 20 minutes of starting a meal, into the abdomen, upper arm, or thigh.

Compared to Novolog®, Fiasp contains two additional excipients: nicotinamide (also known as niacinamide or vitamin B3) and L-arginine hydrochloride (an amino acid). Nicotinamide is intended to result in a faster initial absorption of insulin aspart following subcutaneous injection, and L-arginine hydrochloride is intended to help stabilize the Fiasp formulation. The insulin aspart molecule in Fiasp is identical to Novolog; therefore, once systemically absorbed, it has the same biological action at the insulin receptor.

In a 26-week randomized, double-blind study with 689 patients with Type 2 diabetes, patients were randomized to either mealtime Fiasp or to mealtime NovoLog, both in combination with insulin glargine and metformin in a basal-bolus regimen, where the treatment difference in HbA1c reduction from baseline between the two treatments met the pre-specified non-inferiority margin (0.4%).

Adverse reactions observed with Fiasp include hypoglycemia, allergic reactions, hypersensitivity, injection site reactions, lipodystrophy, weight gain, nasopharyngitis, upper respiratory tract infection, nausea, diarrhea, and back pain.

No safety issues have been identified for nicotinamide or L-arginine even with daily exposure of dose sufficient for highly insulin-resistant patients.

References
Kratom’s Uses and Abuse Potential
Cameron Turner, Auburn University PharmD Candidate, 2018

Kratom, *Mitragyna speciosa*, refers to a group of tree-like plants that are a part of the Rubiaceae family. These plants are native to tropical countries in Southeast Asia such as Thailand, Malaysia, and Myanmar. Traditionally, kratom leaves are used in Southeast Asia to treat hypertension, cough and diarrhea. Recently, it has been reported that kratom possesses analgesic, anti-inflammatory, antipyretic, antidepressant, antihypertensive and opioid-like effects.

Kratom’s opioid-like effects are produced by mitragynine, the most abundant alkaloid found in kratom’s leaves. Mitragynine is an indole alkaloid, and isopid agonist, which works by acting at the supraspinal opioid μ and delta receptors. It may also stimulate postsynaptic alpha 2 adrenergic receptors as well as antagonize 5-HT2A receptors. Opioids stimulate μ receptors while mitragynine stimulates μ receptors and antagonizes delta opioid receptors. Kratom possesses dose dependent pharmacological effects by causing stimulant effects at lower doses and opiate effects at higher doses.

In the United States, kratom has predominantly been used as an opioid substitute, withdrawal agent and psychoactive substance. According to an FDA statement on November 14, 2017, however, there is not reliable evidence to support the use of kratom as a treatment for opioid use disorder, due to a lack of human research. Nonetheless, kratom’s medicinal properties have influenced research into alternative pain medications. Olinvo™ (oliceridine injection) is a new alternative pain agent that has recently undergone Phase 3 clinical trials. It was designed as the first μ receptor G protein pathway selective modulator (μGPS). Unlike opioids, Olinvo does not engage the β arrestin pathway to regulate morphine receptors in the CNS. In studies, this was shown to enhance morphine analgesia and possibly prevent or limit morphine induced constipation, respiratory depression, and analgesic tolerance. In clinical trials, Olinvo was more potent than morphine, reached peak analgesia faster, and caused less GI dysfunction.

Safety and uncertainty are big concerns with kratom and its alkaloid derivatives. Minimal studies have been conducted on safety of these agents, however, one study Trakulsrichai et al, involved 10 men using mitragyna to examine pharmacokinetics in chronic users. This study showed adverse reactions with chronic use, including increased blood pressure, increased heart rate, and tongue numbness. Therefore, there are no current indications for the compound.

Kratom is quickly emerging as a drug of abuse in the United States and elsewhere. There have been reports of deaths following kratom use and it has been banned in some countries in Europe and Asia. Kratom is available in the United States via the Internet, gas stations, smoke shops and on the street. It is currently banned in several states including Alabama, Arkansas, Indiana, and Wisconsin. On February 6, 2018, the FDA released adverse events and scientific analysis providing even stronger evidence of kratom compounds’ opioid properties. This new data adds to the scientific evidence supporting concerns about the safety and abuse potential of kratom.

References
Opioid Crisis Update
Sarah Wright, Samford University PharmD Candidate 2018

On November 1, 2017, the President’s Commission on Combating Drug Addiction and the Opioid Crisis released its final report. The report’s recommendations, of which there were 56, include expanded access to medication assisted treatment, improved prevention programs, and identification of guidelines that can be improved. The report calls for pharmacists to be trained on best practices to evaluate the validity of opioid prescriptions and to not be punished for rejecting inappropriate prescriptions. Over 52,000 deaths were caused by drug overdose in 2015. According to the CDC, deaths by drug overdose increased by more than 20% from 2015 to 2016.

The current opioid epidemic is not just affecting adults. Researchers from the Yale School of Medicine have found that the number of children who were treated in an emergency setting for a unintentional to intentional drug overdose had more than doubled between 1997 and 2012. The greatest increase was among the 1 to 4 years-of-age group. Between 1997 and 2012, a total of 13,052 hospitalizations due to prescription opioid overdoses were identified for ages 1-19 years. The annual incidence of overdose hospitalization per 100,000 children rose from 1.4 to 3.71, or by 165 percent. Even in children younger than 6 years old, opioids now account for most of the drug poisonings in this group, followed by benzodiazipines. Most of the time, the child was inadvertently exposed to a prescription intended for an adult in the household. The incidence of unintentional poisonings increased by 82 percent from 0.17 in 1997 to 0.31 in 2012. “In teens ages 15 to 19, opioid poisonings attributed to suicide or self-inflicted injury increased by 140 percent, while those attributed to accidental intent increased 303 percent,” the team said. A pattern of methadone abuse has also been observed, with hospitalizations increasing almost 10-fold among 15-19 year olds from 1997 to 2012. Research suggests that overdoses by prescription and illicit opioids are likely to remain a persistent, growing problem in children and adolescents unless greater attention is directed toward the pediatric community, who make up nearly a fourth of the U.S. population.

The removal of these drugs from the home is critical. On a local level, the DEA’s fourteenth semi-annual Prescription Drug Take-Back Day on October 28, 2017 saw Alabama collect more than 7,000 pounds of prescription drugs for disposal at its many collection sites across the state. A record-setting 912,305 pounds were collected from across the country. The next Prescription Drug Take-Back Day is set for April 28, 2018.

References