The BP is up ... Now what?

Dan Feig, MD, PhD, MS

Margaret M. Porter Professor of Pediatrics Division of Nephrology University of Alabama, Birmingham February 8, 2020

Disclosures

- Consultant
 - American Academy of Pediatrics
 - American Heart Association
 - Relypsa Pharmaceuticals (DSMB)
- Council
 - International Pediatric Hypertension Association (IPHA)
 - AAP-Society of Nephrology
- ABP Nephrology Sub-Board

Topics for Discussion

- Prevalence and impact of hypertension
- Common presentations of childhood hypertension
- Evaluation and management of hypertension
- Obesity related hypertension
- Hypertensive athletes
- ADHD and BP

The Scope of the Problem

- Affects > 70 million Americans (29%)
- #1 risk factor for CV disease
- Major risk factor of stroke and ESRD
- Primary cause of 455,000 and contributes to 1,300,000/year
- Cost: >\$43 billion per year for meds
- Control Rates 52%
- Increased per capita expenditures associated with reduced control rates
 - Iriso et al. 2009 Int J Cardiol 137:124-131
- Disease and its precursors develop in children

13 yo boy with headaches

- Evaluation for frequent headaches
- No meds, no prior illnesses
- Wt: 85 kg, Ht 158 cm, BMI 34 kg/m²
- BP: 138/91

Traditional Pediatric Approach to Hypertension

Organ Injury at Diagnosis

CARDIAC

- Left ventricular hypertrophy
 - 42% LVMI criteria >95th percentile (38g/m^{2.7})
 - 18% >99.7th percentile (51g/m^{2.7})
 - Burke et al., Circulation 1987, 76:106

RENAL

- Proteinuria
 - 26% have urine pro/Cr >0.3
 - 14% with essential htn, pro/Cr >0.3
 - Pontremoli et al., Am J Hypertens 1998, 11: 430

VASCULAR

- Accelerated atherosclerosis (autopsy data)
 - Daniels et al., Circulation 1999, 82:1243

Neurocognitive Impairment in High Normal and Greater BP

- Impaired Performance on Cognitive Tests (WISC, WRAT in NHANES III) Data
 - 5077 kids: digit span, block design, math scores, down by 1 SD
 - Lande et al., Pediatrics 2003, 1143(6):720-724
- Children with hypertension had impaired behavioral regulation, executive function and low transcranial Doppler-reactivity
 - Ostrovskaya et al. J Child Neurol. 2015, 30:543-6

Symptoms of Hypertension

	Htn	Normal BP
Headache	42%	10%
Chest Pain	14%	4.9%
Abd Pain	10%	4%
Sleep Initiation	27%	6%
Tiredness	26%	6%
Concentration	10%	5%
School Failure	10%	3%

Croix and Feig, Ped Neph 2006, 21:527

So Why Measure BP?

- Hypertension causes target organ damage early in its course
- Hypertension adversely impacts neurocognitive development
- Hypertension negatively impacts quality of life
- Hypertension is a precursor to cardiovascular, cerebrovascular and renal disease

Definition of Hypertension

AAP CPG for Management of Hypertension in Children and Adolescents (2017)

- Stratified by gender, age and height
- Elevated BP: 90-95% OR >120/80
- Stage I Hypertension: >95% OR >130/80
- Stage II Hypertension: >95%+12 OR >140/90

On 3 Consecutive, encounters over >2wks

Blood Pressure Tables

Systolic Blood Pressure- 11 year old Girl

	Height Percentile ———						
	5 th	10 th	25 th	50 th	75 th	90 th	95 th
Ht (cm)	135	138	142	147	<i>152</i>	157	160
50 th	98	99	101	102	104	105	106
90 th	111	112	113	114	116	118	120
95 th	115	116	117	118	120	123	124
95 ^{th+12}	127	128	129	130	132	135	136

Simplified BP Screening Table

Flynn et al. Pediatr 2017; 140(3):e20171904

Age, y	BP, mm Hg				
	Boys		Boys Girls		ls
	Systolic	DBP	Systolic	DBP	
1	98	52	98	54	
2	100	55	101	58	
3	101	58	102	60	
4	102	60	103	62	
5	103	63	104	64	
6	105	66	105	67	
7	106	68	106	68	
8	107	69	107	69	
9	107	70	108	71	
10	108	72	109	72	
11	110	74	111	74	
12	113	75	114	75	
≥13	120	80	120	80	

Evaluation of Hypertension: Initial Screening

- Accurate measurement
 - Relaxed kid in exam room not vitals station
 - Callibrated Oscillometric Device
 - Appropriate Cuff
 - Length >80% arm circumference
 - Width >40% arm circumference at midpoint
- Confirm!!!
 - Measure on 3 different days
 - Consider ABPM

13yo Overweight Boy

- Recheck with large adult cuff: 119/62
 - >30% of referrals to Hypertension Clinic have either been checked only once or repeatedly with too small a cuff
- Weight loss, diet and exercise
- Annual BP checks at routine visits

16 yo Overweight boy

- Evaluation for frequent headaches
- On methylphenidate 36mg daily for ADHD
- VS: Wt 88 Kg, Ht 167 cm, BMI 31.6kg/m²
- BP 139/89
- Stage 1 Hypertension > 130/80
- Recheck with appropriate cuff in exam room: 136/88, 136/82, 133/84

Classes of Hypertension In Children

- White Coat Hypertension
 - 30-40% of referrals
- Secondary Hypertension (20-30%)
 - Renal (common) 85%
 - Cardiovascular (uncommon)
 - Drug use/abuse (uncommon)
 - Endocrine (very rare)
 - Tumor (very, very rare)

Evaluation of Hypertension: Stage 1 Hypertension

- Medical History
- Family History
- Physical Exam
- Urinalysis (including micro)
- Labs
 - Lytes, BUN, Cr
 - Lipid profile, glucose, drug screen
 - Endocrine Screening
- Imaging
 - Renal Ultrasound
 - Echocardiogram
 - ?EKG

Ambulatory Blood Pressure Monitoring

- White Coat Hypertension
- Patterns
 - Mean & extremes
 - BP load
 - Chronobiology

Nocturnal and TOD

Dx: White Coat Hypertension

Rx of White Coat Hypertension

- No medications
- Continue to measure BP at all contacts
- Screen and manage risk factors (i.e. obesity, inactivity, dietary indiscretions)
- WCH is no protection against and is likely a risk factor for future hypertension

ADHD and Childhood Hypertension Meta Analysis

- Assess BP Effects of Methylphenidate, Amphetamines, Atomoxetine
- 18 Studies, 3892 patients
- Statistically significant changes in SBP, DPB but small effect size
 - SBP mean +1.6mm,
 - DBP mean +1.7mm,
 - HR mean +3.7 bpm
- No change in prevalence of hypertension
- Magnitude same with stimulant and nonstimulant meds

Hennissen et al. CNS Drugs. 2017; 31:199

ADHD Meds - Outlier Effects

- BP means show little difference but frequency of outlier measurements increased in treated patients
- Among blinded RCTs, the prevalence of extreme outliers, BP Δ >20, or new stage 2 hypertension is 3.8-11x higher in treated vs placebo

Practical Summary: ADHD Meds and BP

- On a population level both stimulant and non-stimulant meds cause a statistically significant but minimal rise in SBP, DBP, HR
- Effects attenuate after 12mo
- Population studies suggest not a significant cause of hypertension
- 0.5-1% of treated subjects have large BP effects that are idiosyncratic and often resolve with a medication change

16yo Football Player

- 184cm, 132kg, BMI 39 kg/m²
- Casual BPs: 147/96, 145/95

- Confirmed hypertension by ABPM
- All labs and renal US normal
- Past Med history: obesity, no illnesses
- Family history: hypertension, early CVD

The Athletic Child

Sudden Death in Young Athletes

 Hypertrophic Cardiomyopathy 	36%
 Commotio Cordis 	20%
 Congenital Coronary Anomalies 	16%
 Cardiac Mass 	7.5%
 Drug Abuse 	5.3%
 Myocarditis 	5.2%
 Valvular Disease 	2.9%
 Aortic Rupture (Marfan) 	2.1%
 Dilated cardiomyopathy 	1.3%
 Asthma 	2.1%

66% of events could have been predicted by echocardiography

Maron. NEJM 2003, 349:1064-1075

1.6%

Heat Stroke

Evaluation of Hypertensive Athletes

- Confirm Hypertension
- Strongly consider ABPM
- Labs
 - In ALL: CMP, UA
 - Consider: drug screen, others based on symptoms
- Imaging
 - Echocardiogram soft recommendation
 - EKG NOT HELPFUL unless symptoms c/w arrhythmia

Dietary Supplements

- \$30 billion industry with celebrity testimonials and glitzy media
- Manufacturers need not demonstrate safety or efficacy before marketing
- Categories
 - Protein and calories supplements
 - Energy enhancers
 - Herbal and secret supplements

Hypertension and Sports Participation

Current Recommendations

- Stage 1 Htn: Full Participation, monitor every 2 months until BP normal
- Stage 2 Htn: Restrict participation only until BP control is achieved, then monitor
- Evidence of CV disease: case by case

O'Connor et al., 36th Bethesda Conference: Curr Sports Med Rep. 2007

Apr;6(2):80-4

Hypertension and Obesity

United States is "Well Rounded"

Hypertension and Obesity

Obese children

- 18-32% have systolic hypertension
- 25-48% have pre-hypertension
- Acute weight gain/loss parallels BP

Approximately 72,000 children in Alabama have hypertension

Mechanisms of Obesity Hypertension

Sugar Consumption in Adolescents

National Health and Nutrition Examination Survey (NHANES) 1988-1994

M. B. Vos, et al. Medscape Journal of Medicine. 2008; 10(7): 160.

Health Risks of SSBs

- Health Professionals F/U: top quartile of SSB intake had 20% increased risk of coronary disease, 34% increase risk of hypertension
 - De Koning et al. Circulation 2012; 123:1735.
- Each quartile of increasing SSB intake associated with 4mm Hg increase in DBP
 - Nguyen et al. J Peds. 2009, 154:807.
- Meta-analysis of data from 94 countries: each % point increase of caloric intake from sugar associated with 5% increase in T2DM risk
 - Siegel et al. Diabetes Res Clin Pract 2012; 96:76.

It's the Quantity not the Source

Calorie and sugar counts of selected beverages

(Per 8-ounce serving; all juices are unsweetened)

Beverage	Calories	Grams of	f total sugar
Sprite		100	26
Pepsi		100	28
Coca-Cola classic		97	27
Gatorade G Cool Blue	50		1 4
Grape juice		152	36
Pineapple juice		132	25
Cranberry juice		1 16	31
Apple juice		114	24
Orange juice		112	21
Grapefruit juice		96	22

Sources: U.S. Department of Agriculture Nutrient Data Laboratory; company information Graphics reporting by ${\bf Karen\ Kaplan}$

Los Angeles Times

Gm sugar per 6oz serving

Treatment Algorithm

Non-Pharm Therapy in HTN

Dietary Intervention

- Know where you are starting Food Diaries
- Realistic calorie and content goals
 - <4gm Sodium per day
 - <100gm sugar per day
- Caffeine/Supplements Beware the "Mt Dew Habit"
- Tobacco/Substance abuse
- DASH for Kids Not magic, just proven
 - In clinical trials reduced BP 12/6

Exercise

- Structured/Supervised is best
- Must be at least 4 days per week
- Goal>45min per day

Medication Selection

Calcium Channel Blockers

- Essential or secondary hypertension
- Poor for renin dominant hypertension
- Less ideal in very obese

ACEI/ARBs

- Essential or secondary hypertension
- Ideal for renin dominant hypertension
- Important synergy with diuretics
- High risk in pregnancy, dehydration

Beta Blockers

- Most often in patients with cardiac disease, CKD or anxiety disorder
- Less optimal side effect profile especially in obese

Diuretics

- Often optimal second agent, especially fixed combination
- First line in some obesity and steroid associated hypertension

15yo Female Swimmer

 Elite swimmer, told not to work out because of hypertension

- Medical history
 - BW 2300gm at 35 wks EGA, pre-ecclampsia
 - Many ear infections, continued after PETs
- No meds, denies steroids, supplements
- BP 149/98 confirmed by ABPM
- BMI 22%, normal exam except retinas
- Na 141, K 3.1, Cl 102, HCO₃ 30, BUN 12, Cr 0.4
- Moderate LVH, proteinuria

Renal Perfusion (DMSA)

Renal Angiography (Different Child!!)

- RAS often not seen by renal US, in kids
- Renal asymmetry only with long ischemia
- Bruit only in 30%
- Non-invasive imaging is very sensitive

Renal or Renovascular Hypertension

- Stage 2 hypertension with cardiac target organ damage, ±electrolyte abnormalities
- Medical therapy 1st ACEi/ARB
 - Monitor renal function, electrolytes
 - Caution with Mid-aortic and William Syndrome
- Angioplasty in renovascular htn often mitigates but doesn't cure and may need to be repeated
- Nephrectomy can be considered if refractory to medical therapy, often not curative

Hypertensive Crisis

 17 yo boy comes to ER for headaches and decreased vision

- Father on HD for hypertension
- VS: HR 74, RR 22, BP 198/114
- Exam: confused, abdominal ascites, LE edema
- UA: +4 protein, trace blood,
- Labs: BUN 58, Cr 4.8, Ca 6.4,
- Head CT normal, Renal US small echogenic kidneys

Evaluation of Hypertensive Emergencies

- Confirmation of elevated BP
 - Oscillometric measurement done correctly
 - Invasive arterial monitoring
- Screening for secondary causes
 - Medical and medication history
 - Physical Exam
 - Labs: lytes, Cr, Hb, UA, UDS
 - Renal Ultrasound
 - Head CT or MR if CNS symptoms
- Specialized Screening
 - MRA or Angiography
 - Renal Biopsy

PRES: "Posterior" Reversible Encephalopathy Syndrome

Prasad et al. Br J Radiol 2007, 80:422

Hypertensive Emergencies

Encephalopathy/Seizures
Cardiac Symptoms
Pulmonary Edema

IV Drips:

Labetolol 1-3 mg/kg/hr Nicardipine 0.1-0.4 mg/kg/hr Nitroprusside 1-8 mcg/kg/min Esmolol 50-600 mcg/kg/min Lasix 0.1-0.3mg/kg/hr

IV Bolus: Hydralazine .15-.3 mg/kg

Oral, Rapid Onset:

Isradipine .05-.15mg/kg Clonidine .05-.1 mg/kg

Long Acting: CCB ACE-I β-blocker

Problems of Hypertension in Children

- Under-diagnosed/inadequate screening
- Significant target organ damage
- Significant reversible symptoms
- Developmental/intellectual impact
- Increasing prevalence
- Eventually becomes adult hypertension

Take Home Points

- Accurate measurement
 - Cuff size and confirmation
 - ABPM

- Initial Evaluation to distinguish WCH/Essential/Secondary hypertension and diagnosis target organ damage
- Lifestyle modification is first line therapy for elevated BP and stage 1 essential hypertension
- ACEi, ARB and CCBs are usual first line, diuretics most common add-on therapy
- Most hypertensive athletes should continue to play

The End

